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Abstract

In this thesis, we compare various compression methods with a particular in-
terest in medical imaging and standards that are compatible with the most widely
used medical imaging format Digital Imaging and Communications in Medicine
(DICOM).

We evaluate various compression techniques suitable for medical imaging, based
on metrics such as compression efficiency, structural similarity and encoding speed.
We explore both lossless and lossy standards that are accepted by various med-
ical communities. 2.7 We implement off-the-shelf video encoding algorithms from
the Moving Picture Experts Group (MPEG) to be compatible with the DICOM
standard. We also test the various encoding methods to provide insights to the
particular compression methods most suitable for various imaging technologies
and use-cases needed by the medical imaging community. Through this work, we
aim to contribute to the field of medical imaging by providing insights into ef-
fective compression strategies that facilitate the efficient handling of large medical
datasets, ultimately creating a discourse that may help in better patient outcomes.

We explore and propose a novel experimental encoding scheme suitable for ’in-
tertwining’ large volumes of data. This method aims to supplement current com-
pression methods when it comes to archival of medical imaging where quite a lot
of the information between patients is repetitive by nature and does not require
instant access.
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Zusammenfassung

In dieser Arbeit vergleichen wir verschiedene Kompressionsverfahren mit beson-
derem Fokus auf die medizinische Bildgebung und auf Standards, die mit dem am
weitesten verbreiteten medizinischen Bildformat (DICOM) kompatibel sind.

Wir bewerten diverse Kompressionstechniken für die medizinische Bildge-
bung anhand von Metriken wie Kompressionseffizienz, struktureller Ähnlich-
keit und Kodierungsgeschwindigkeit. Dabei untersuchen wir sowohl verlustfreie
als auch verlustbehaftete Standards, die in verschiedenen medizinischen Fach-
kreisen anerkannt sind. 2.7 Darüber hinaus implementieren wir gängige Video-
Kodierungsalgorithmen aus dem MPEG-Standard, um sie mit DICOM kompatibel
zu machen. Wir testen zudem verschiedene Kodierungsverfahren, um Erkennt-
nisse darüber zu gewinnen, welche Kompressionsmethoden sich am besten für
unterschiedliche bildgebende Technologien und Anwendungsszenarien in der med-
izinischen Bildgebung eignen. Ziel unserer Arbeit ist es, durch die Analyse
effektiver Kompressionsstrategien einen Beitrag zum Umgang mit großen medizin-
ischen Datensätzen zu leisten und damit eine Diskussion anzustoßen, die letztlich
zu einer besseren Patientenversorgung beitragen kann.

Ferner untersuchen und schlagen wir ein neuartiges experimentelles Kodiers-
chema vor, das sich zum ”Verflechten“ großer Datenmengen eignet. Diese Methode
soll bestehende Kompressionsverfahren bei der Archivierung medizinischer Bilder
ergänzen, da ein Großteil der Informationen zwischen Patient*innen von Natur
aus wiederkehrend ist und nicht jederzeit sofort verfügbar sein muss.
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Felix Brüll they have provided me with robust support and freedom to finish my
thesis. I would like to express my gratitude for the pydicom project, FFMPEG
group and the OPENJPEG project. Without their commitment to free software I
would not have been able to finish my work. Most importantly, I am grateful for
my family and friends unconditional, and loving support.

V



Contents

1 Introduction 1

2 Related Works 3
2.1 Shannon’s Information Theory and Entropy Coding . . . . . . . . . 3

2.1.1 Shannon’s Information Theory . . . . . . . . . . . . . . . . . 3
2.1.2 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Run Length Encoding (RLE) . . . . . . . . . . . . . . . . . 4
2.1.4 Huffman Encoding . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 DICOM Group . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 DICOM File Encapsulation . . . . . . . . . . . . . . . . . . 6
2.2.3 Compression as Utilized in the DICOM Standard . . . . . . 8

2.3 JPEG Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 JPEG-LS (Lossless JPEG) . . . . . . . . . . . . . . . . . . . 10
2.3.2 JPEG 2000 and HTJ2K . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Implementation in DICOM for Medical Imaging . . . . . . . 12

2.4 PNG Standard and Other Lossless Methods . . . . . . . . . . . . . 12
2.5 3D Compression (Video-Based Methods) . . . . . . . . . . . . . . . 14

2.5.1 H.264/AVC and H.265/HEVC . . . . . . . . . . . . . . . . . 15
2.5.2 FFV1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Key Features of Medical Imaging Datasets . . . . . . . . . . . . . . 18
2.6.1 Volumetric Data-Sets . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 Non Volumetric Data-Sets . . . . . . . . . . . . . . . . . . . 19

2.7 Lossy Compression Standards, Globally Accepted in Medical Ima-
ging Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.1 Medically Acceptable Compression Ratios . . . . . . . . . . 20
2.7.2 Bit-Depth Reduction in Clinical Compression . . . . . . . . 21
2.7.3 Transcoding for Compression: FFmpeg Encoding Best Prac-

tices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

VI



2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 23
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Research Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Various schemas used for testing . . . . . . . . . . . . . . . . 23
3.2.2 Sample Set for Testing . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Dependant Variables . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 PSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 SSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4 Compression Ratio (CR) . . . . . . . . . . . . . . . . . . . . 26
3.3.5 Analysis Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.6 Testing Environment and Hardware . . . . . . . . . . . . . . 26

4 Proposed Archival Method 27
4.0.1 Exploiting Temporal Redundancy . . . . . . . . . . . . . . . 27

4.1 Compression Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Implementation and File Organization . . . . . . . . . . . . . . . . 29
4.3 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Results 30
5.1 Volumetric Information . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Human CT scans . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Non-Volumetric Information . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Human X-Ray Scans . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Pathology Scans . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion 41

References 42

VII



List of Tables

2.2 Typical Image Dimensions and Uncompressed File Sizes for Com-
mon Medical Imaging Techniques[13] . . . . . . . . . . . . . . . . . . 18

2.3 Examples of Diagnostically Acceptable Lossy Compression Ratios
by Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Abbreviations

CR Encoding Speed

DCT Discrete Cosine Transform

DICOM Digital Imaging and Communications in Medicine

ES Encoding Speed

MPEG Moving Picture Experts Group

MSE Mean Squared Error

MSSIM mean Structural Similarity Index

PSNR Peak Signal-to-Noise Ratio

QL Quality Loss

RLE Run Length Encoding

SSIM Structural Similarity Index

VIII



1 Introduction

In this thesis, various methods for compressing three-dimensional (3D) voxel tex-
tures in medical imaging are studied, with particular attention to formats and
standards commonly accepted within the medical community. The chosen fo-
cus emerges from the fact that medical imaging data ranging from Computed
Tomography (CT) scans to detailed pathology slides often exhibits large file sizes,
making efficient compression a critical requirement for both archival and clinical
workflows. This thesis is based on the work of Emre Cem Elevis, titled Compres-
sion of 3D (Voxel) Textures for Medical Imaging, which aims to evaluate popular
approaches to compression and propose a novel archival method for large-scale
medical data.

A core element of this thesis is the thorough comparison of different com-
pression standards, including both classical still-image (e.g., PNG, JPEG-LS,
JPEG 2000) and video-based methods (e.g., H.264/AVC, H.265/HEVC,
FFV1). These codecs have been explored due to their ability to maintain accept-
able image fidelity under high compression ratios. By considering their application
within the DICOM standard, the thesis not only measures the raw compression
efficiency but also contemplates standardization and compatibility issues pertin-
ent to clinical use. Similar to the widely accepted lossy compression thresholds
in diagnostic radiology, as summarized by multiple radiological societies, this
research evaluates both lossless and near-lossless techniques, examining whether
such techniques remain viable for diagnostic tasks.

The overarching objective is twofold: (1) to investigate compression efficacy,
speed, and resultant image quality across several algorithms, and (2) to propose
an innovative “intertwining” approach. In this new archival strategy, medically
similar scans are grouped, reordered, and collectively encoded to exploit temporal
and spatial redundancies. Much like a short-scale feasibility study, the outcomes
are intended to shed light on whether medical institutions can reduce storage costs,
or gain faster data transfers, without sacrificing clinically relevant details.

Due to the emphasis on real-world feasibility, the analysis of each compression
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CHAPTER 1. Introduction

scheme is carried out on actual 3D voxel data, with size and bit-depth properties
representing typical medical scenarios. In addition to quantitative results such as
compression ratios, encoding times, PSNR, and SSIM visual assessments of resid-
ual artifacts are conducted to ensure that subtle anatomical features are preserved.
Through these experiments, the benefits of leveraging advanced video codecs for
3D data and the potential improvements from the novel archival method are pin-
pointed.

This thesis is organized as follows: chapter 2 discusses the necessary theor-
etical background, including classic still-image encoding methods, the DICOM
standard, and the emergence of 3D (video-based) compression approaches. In
chapter 3, the methods, protocols, and performance metrics used in this research
are presented. The novel archival strategy is introduced in chapter 4, followed
by the empirical results in chapter 5. The implications and limitations of these
findings are examined in ??, while the final conclusion and outlook for further
research are given in chapter 6. The purpose of this thesis is to determine optimal
compression schemes for large-scale medical imaging, laying groundwork for future
standardization and more efficient, clinically safe archiving of medical data.
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2 Related Works

2.1 Shannon’s Information Theory and Entropy
Coding

2.1.1 Shannon’s Information Theory

Claude E. Shannon introduced the concept of information entropy[20] as a measure
of the average amount of information contained in a random variable X. Formally,
the Shannon entropy H(X) can be defined as:

H(X) = −
n∑

i=1
p(xi) log2

(
p(xi)

)
,

where p(xi) is the probability of the i-th symbol. The higher the entropy, the more
information is contained in the signal, implying that it is harder to compress.

2.1.2 Entropy Coding

Entropy coding encompasses a family of coding methods designed to represent
more probable symbols with fewer bits and less probable symbols with more bits.
By matching code lengths to symbol frequencies, these methods can reduce the
overall size.

These techniques are often the final step in many lossless compression pipelines.
For instance, once data redundancies are minimized by run-length encoding, dif-
ference prediction, or dictionary methods, the result is then fed into an entropy
coder for additional compression.
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Figure 2.1: Entropy vs. Probability Distribution of a grayscale teapot image

Figure 2.2: (RLE) applied to bitmaps.

2.1.3 Run Length Encoding (RLE)

RLE is a straightforward lossless data compression technique that encodes con-
secutive repeated symbols (or runs) by storing the symbol’s value and the number
of occurrences. In the context of 3D voxel textures, RLE is especially useful when
large regions of homogeneous data exist, which is common in medical imaging
datasets.

For example, a sequence of voxels with values 11110000 would be encoded as
4x1, 4x0 using RLE, thereby reducing storage requirements when uniform se-
quences are prevalent. However, for data with high complexity or frequent changes,
RLE often becomes less efficient.
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Figure 2.4: Compression comparison of RLE, Huffman and, both combined

2.1.4 Huffman Encoding

Figure 2.3: An example of a Huffman tree
for encoding the string “dicom.”

Huffman encoding[10] is another lossless
data compression method that system-
atically assigns variable-length codes
to symbols based on their frequencies.
Symbols occurring more frequently re-
ceive shorter bit patterns, while those
occurring less frequently are assigned
longer ones. 2.5 The result is a pre-
fix condition code , simplifying un-
ambiguous decoding.

Huffman encoding is often the final step in compression pipelines (e.g., in PNG’s
DEFLATE algorithm), where it is combined with other compression methods such
as LZ77 or RLE to achieve efficient encoding. 2.4
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Figure 2.5: Symbol frequencies alongside the length of their Huffman codes

2.2 Digital Imaging and Communications in
Medicine (DICOM)

2.2.1 DICOM Group

DICOM (Digital Imaging and Communications in Medicine) is an international
standard for medical images and related information. It defines the formats for
medical images that can be exchanged with the data and quality necessary for
clinical use.

2.2.2 DICOM File Encapsulation

Header: Preamble
Header: Prefix
Data Elements
Group 0010
Element Tag
0010: Name
0030: Birthday
. . .

6



CHAPTER 2. Related Works

Group 0028
0010: Image Row
0011: Image Columns
. . .

Group xxxx
. . .

Pixel Data
11 00 0D 00 0A 00 08 00

06 00 06 00 08 00 0A 00
00 0D 0F 00 12 00 12 00
10 00 0C 00 08 00 0A 00
09 00 08 00 08 00 08 00 09
300 0A 00 0B 00 08 00 09
00 0A 00 08 00 08 00 0C 00

Every DICOM file consist of three parts. First, a 128 byte preamble header
followed by a 4 byte ASCII prefix of ’D’ ’I’ ’C’ ’M ’. Second, the Data Elements
which contains ASCII text information both about the patient and the current
sample such as patient’s name, birthday, ID, sample size, sample location, sample
duration etc.

Each data element has a tag field consisting of 2 byte group number and 2 byte
element number, a length field and a value field. Important to note is that there
are thousands of various DICOM data elements with a well specified meaning.
But it is still possible define additional elements called ’private elements’ which
are indicated with an odd group number while standard DICOM elements are
indicated with even numbers Optionally it has a Value Representation (VR) field
to specify the listed data type.[6]

Last and third, is the Image Pixel data, this raw data contains formatted in-
formation according to the elements of the pixeldata group 0028. Usually image
file cannot be decoded without this group’s information.

This closely knit combination of sample and additional sample information is
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CHAPTER 2. Related Works

primarily why DICOM standards are so widely used in the integration of digital
imaging systems in medicine.

2.2.3 Compression as Utilized in the DICOM Standard

Figure 2.6: Transfers methods officially
recognized by DICOM

The DICOM standard uses various
JPEG protocol identifier data elements
to declare the image transfer syntax
used. the ones currently in use can
be found in the diagram

2.3 JPEG Standard

As discussed in Section 2.1.2, Shan-
non’s Information Theory under-
pins nearly all modern compression al-
gorithms by highlighting how data re-
dundancy can be reduced through op-
timal code assignment. The Joint Pho-
tographic Experts Group (JPEG) lever-
aged these ideas when developing its
original image compression standard in
1992.

JPEG supports both lossy and
lossless compression modes, with the
lossy mode being the most common
for everyday usecases. In the lossy
pipeline (often referred to as baseline
JPEG), each 8×8 block of pixels is
transformed into the frequency domain
via the Discrete Cosine Transform
(DCT) . By quantizing the resulting
DCT coefficients, many high-frequency

8



CHAPTER 2. Related Works

details (which are less perceptible to
the human eye) are discarded or re-
duced, shrinking the data size. Finally,
an entropy coding step typically Huffman or arithmetic coding, as detailed in
Section 2.1.4 encodes the quantized coefficients using fewer bits for more common
values. This flow is summarized as:

1. Block Splitting: The image is divided into 8×8 blocks.

2. DCT Transform: Each block is converted to the frequency domain.

3. Quantization: High-frequency components are reduced or set to zero based
on a quantization matrix.

4. Entropy Coding: The quantized coefficients are compressed using Huffman
or arithmetic coding.

Because lossy JPEG exploits characteristics of human visual perception, it often
achieves high compression ratios with minimal perceptual distortion. Figure 2.7
shows how varying the compression quality impacts the appearance of the Utah
Teapot image. Figure 2.11 shows the impact on the Structural Similarity Index
(SSIM) 3.3 values at varying bitrates while figure 2.10 shows the impact on the
Peak Signal-to-Noise Ratio (PSNR).

Figure 2.7: Visual comparison of different JPEG quality settings using the Utah
Teapot.[9] Lower quality factors discard more high-frequency data, resulting in

visible artifacts.
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Figure 2.8: Compression Ratio vs. PSNR:file size reduction versus the peak
signal-to-noise ratio (PSNR) for various JPEG quality factors applied to the Utah

Teapot image.

2.3.1 JPEG-LS (Lossless JPEG)

In scenarios requiring exact reproduction of pixel data, a lossless variant of JPEG
referred to as JPEG-LS can be used. Rather than discarding high-frequency in-
formation, JPEG-LS employs a predictive coding scheme combined with entropy
coding to achieve lossless compression.

Specifically, it attempts to predict each pixel based on its nearest neighbors, en-
codes the prediction error, and then uses an entropy coder.2.1.2, JPEG-LS found
utility in fields like medical imaging, where diagnostic images require precise stor-
age. In practice, JPEG-LS typically outperforms general-purpose compressors like
PNG for medical images,5 offering both higher compression and far lower computa-
tional cost. For example, hardware implementations of JPEG-LS report compres-
sion ratios similar or superior to those of lossless JPEG 2000, and distinctly better
than PNG, on both grayscale and color images. This efficiency makes JPEG-LS at-
tractive for medical applications where fast, lossless compression is needed without
adding undue processing load. JPEG-LS also supports an optional “near-lossless”
mode, allowing a user-defined error tolerance (e.g. a few gray levels) to further
improve compression when strictly lossless reconstruction is not required.

10
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Figure 2.9: An example 2D wavelet transform of the Utah Teapot[9] using an
integer wavelet (Le Gall 5/3). Note how the transform sub-bands separate coarse

and detail information.

2.3.2 JPEG 2000 and HTJ2K

JPEG 2000 (ISO/IEC 15444) is another important standard, offering state-
of-the-art compression performance and rich features for high-bit-depth images.
JPEG 2000 uses wavelet transform coding (with a reversible integer wavelet for
lossless mode) and advanced bit-plane entropy coding (EBCOT), replacing the 8×8
block DCT-based approach of the original JPEG and Leveraging integer wavelets
such as the Le Gall 5/3 (see Fig. 2.9). In lossless mode, JPEG 2000 provides
exact reconstruction while typically achieving better compression ratios than the
old lossless DCT based JPEG standard.[2] Moreover, JPEG 2000 supports any
bit depth and even multi-component (e.g. color) images, and it enables progress-
ive transmission by quality or resolution. Another benefit is Region of Interest
(ROI) Coding: Specific regions (e.g., a tumor in a medical scan) can be encoded
at higher quality than the background, focusing bits where they matter most. Due
to these advantages in medicine, JPEG 2000 was incorporated into DICOM and
other medical image workflows for both lossless and lossy compression. A known
drawback, however, is its computational complexity: encoding/decoding JPEG
2000 is very CPU-intensive.

An important enhancement in this family is High Throughput JPEG 2000

11
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Figure 2.10: JPEG PSNR Comparison at varying quality settings

(HTJ2K), designed to overcome its drawback with encode and decode speeds
significantly faster while retaining the compression advantages of wavelet trans-
forms. This improved throughput makes JPEG 2000 more practical for real-time
or large-volume applications frequently encountered in medical imaging.

2.3.3 Implementation in DICOM for Medical Imaging

DICOM) format integrates JPEG, JPEG-LS, and JPEG 2000 (including HTJ2K)
as recognized transfer syntaxes for storing and transmitting medical images. (See
figure 2.6)

2.4 PNG Standard and Other Lossless Methods

The Portable Network Graphics (PNG) format is a widely used lossless im-
age format that employs the Deflate compression algorithm, which combines LZ77
dictionary coding with Huffman entropy coding. PNG was originally designed as
a patent-free replacement for GIF (Graphics Interchange Format) and supports
up to 16-bit grayscale and 48-bit color images, exceeding GIF’s 8-bit limitation.
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Figure 2.11: JPEG SSIM Comparison at varying quality settings

In practice, however, PNG’s compression performance on high bit-depth medical
images is often suboptimal. It uses simple predictive filters on image scanlines
and then applies the Deflate compressor (as in ZIP/gzip) to the pixel data. This
general-purpose approach was not tailored for continuously-toned 16-bit medical
images, and studies have found PNG to be less effective than dedicated medical
image compressors – especially for images greater than 8 bits per pixel. For ex-
ample, in a comparison of lossless methods on 16-bit images, PNG achieved signi-
ficantly lower compression ratios than specialized algorithms. While PNG remains
convenient and widely supported, its lack of native support for volumetric (3D)
data means that each slice of a medical volume must be stored and compressed
independently, forfeiting any cross-slice redundancy benefits.

The Tagged Image File Format (TIFF) is another popular format in medical
imaging for storing high-resolution, high bit-depth images. TIFF is extremely flex-
ible: it supports grayscale and color depths of 16 bits (and beyond), and it allows
multiple images (pages) in a single file (useful for encoding image stacks or slices).
For compression, TIFF can employ several lossless schemes. A common option
is Lempel–Ziv–Welch (LZW) compression, a dictionary-based method historically
regarded as the de facto standard compression in TIFF. Another option is Pack-
Bits, a simple RLE scheme for lossless compression. Modern TIFF extensions even
allow Deflate (ZIP) compression as a lossless method. These compression choices

13
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are internal to the TIFF container; unlike video codecs, they compress each image
frame independently without spatial or temporal cross-frame prediction. TIFF’s
ability to handle 16-bit pixels and to losslessly compress images (or leave them
uncompressed) without quality loss on re-saving makes it well suited for medical
use cases where preserving full fidelity is essential. However, like PNG, standard
TIFF compression does not exploit inter-image redundancy in multi-frame data –
each slice or frame is compressed in isolation.

2.5 3D Compression (Video-Based Methods)

Inter-frame compression uses motion estimation to exploit temporal redundancy
between image frames. In contrast to Intra-Frame compression which exploits the
low entropy that is inherent to natural images and encapsulates each frame sep-
arately. For our applications in video and volumetric image compression, a series
of 2D images(frames) can be compressed more efficiently by leveraging similarities
across adjacent frames within the volume, rather than compressing each frame
independently. This is the basis of the Moving Picture Experts Group (MPEG)
family of video codecs developed by the Moving Picture Experts Group. An inter-
frame codec will search for matching regions between a current frame and one or
more reference frames, and encode the displacement (motion vector) and difference
residual instead of the full image content. Figure 2.12 illustrates this process: the
encoder finds a block in a reference frame that closely predicts the block in the
current frame, and encodes only the motion vector plus the small difference (resid-
ual) needed to correct the prediction.(See figure 2.13) Because consecutive medical
images (e.g., slices in a CT volume) often exhibit only slight changes, inter-frame
prediction can greatly reduce the data to be encoded. The residual errors are typ-
ically transformed and entropy-coded, just as in still-image compression, yielding
a high compression ratio if the temporal redundancy is high. This video-based
approach contrasts with traditional DICOM image compression where each frame
is compressed in isolation (e.g., using JPEG on each slice) without exploiting inter-
frame correlations. Research has demonstrated substantial gains by compressing
medical image sequences as video: one study reported that combining JPEG-LS
intra-frame coding with inter-frame motion compensation achieved up to a 77%[11]
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Figure 2.12: Inter-frame prediction process. In this case, there has been an
illumination change between the block at the reference frame and the block which

is being encoded: this difference will be the prediction error to this block.[15]

reduction in data size for an MRI sequence compared to JPEG-LS alone . Like-
wise, encoding CT/MR slices in three dimensions (treating the volume as a video)
can improve compression by 25%[11] over 2D slice-by-slice methods. These results
underscore the potential of 3D and temporal redundancy exploitation in medical
image compression.

2.5.1 H.264/AVC and H.265/HEVC

Modern video codecs such as H.264/AVC and H.265/HEVC represent the
state of the art in inter-frame compression and have been considered for compress-
ing medical imaging series. H.264/AVC (MPEG-4 Part 10) uses block-based intra-
frame coding (an integer DCT transform with entropy coding) and inter-frame mo-
tion prediction with multiple reference frames. Its successor H.265/HEVC further
refines this by allowing larger and more flexible block structures (see figure2.15),
improved motion compensation precision, and more sophisticated entropy coding,
achieving roughly 50% better compression than H.264 for the same visual quality
in general video applications.
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Figure 2.13: Residual information and motion vectors on a CT slice using H264
encoding

Figure 2.14: Structure of an HEVC encoder[21]
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Figure 2.15: Different Grouping strategies employed by H.264 (left) and H.265
(right)

2.5.2 FFV1

FFV1 (FFmpeg Video Codec 1) is a lossless intra-frame video codec. FFV1 is
an open-format, lossless codec that employs predictive coding and entropy coding
on each frame independently (without inter-frame motion vectors). Originally de-
veloped in the FFmpeg project, it has gained popularity in the archival community
for its impressive compression density and speed on high-bit-depth content. FFV1
typically achieves compression ratios comparable to or better than JPEG 2000’s
lossless mode, while requiring less computational overhead. (((Many institutions
like the U.S. Library of Congress,[7] have adopted FFV1 for video preservation.))
For medical imaging, FFV1 offers an attractive option when one needs to compress
large multi-frame studies (such as angiography runs or surgical videos) without los-
ing any data. It supports high-bit-depth pixel formats (up to 16-bit RGB/YUV
and beyond) and is capable of handling grayscale or color frames, which aligns well
with the needs of 16-bit grayscale DICOM imagery. Moreover, as a intra-frame
codec, FFV1 avoids any temporal artifact propagation and each frame can be de-
coded independently, a useful property for random access in medical cine loops.
But cannot exploit the temporal similarities within the sample to achieve better
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Table 2.2: Typical Image Dimensions and Uncompressed File Sizes for Common
Medical Imaging Techniques[13]

Modality Dimensions Bit Depth Median Data Size
CT 512, 512, 500 12–16 bits ≈ 520MB
MRI 256, 256, 20, 25 12–16 bits ≈ 130MB
Pathology 30,000, 30,000 8 bits (color) ≈ 2.5GB
PET 128, 128, 40 16 bits ≈ 32MB
Radiography 2000, 250) 10–16 bits ≈ 20MB
Tomosynthesis 2457, 1890, 50 10–16 bits ≈ 0.4GB
Ultrasound 512, 512, -, 50

frames/s
8 bits ≈ 38MB/s ≈ 260MB

compression ratios.

2.6 Key Features of Medical Imaging Datasets

2.6.1 Volumetric Data-Sets

Computed Tomography (CT)

CT scans produce high-resolution volumetric data, typically with a fixed 512×512
in-plane resolution. The number of slices varies widely depending on anatomy and
protocol. Cardiac CT frequently includes multiple temporal frames to capture
motion, generating significantly larger datasets.

Magnetic Resonance Imaging (MRI)

MRI scans commonly yield 3D datasets or 4D cine sequences (especially cardiac
MRI). Typical resolutions range between 256×256 to 512×512 pixels. Cardiac cine
MRI produces time-resolved datasets to evaluate motion, resulting in moderate-
sized data volumes.

Positron Emission Tomography (PET)

PET datasets have comparatively lower spatial resolutions (128×128 to 256×256)
but may include temporal sequences (e.g., cardiac gating). Data volume remains
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moderate due to lower resolution and fewer slices compared to CT or MRI.

Tomosynthesis (3D Mammography)

Breast tomosynthesis produces limited-angle 3D reconstructions from multiple X-
ray projections. Typical studies generate moderate-sized data volumes with ap-
proximately 50 thin slices, each having high spatial resolution.

2.6.2 Non Volumetric Data-Sets

By their characteristics, they are not fit well for inter-frame encoding, they are
usually outside the scope of this paper.

Digital Pathology (Whole Slide Imaging)

Whole slide imaging generates extremely high-resolution 2D color images, often
exceeding billions of pixels per image. High-resolution scanning at 20× magnific-
ation easily produces files exceeding gigabytes in size, necessitating compression
and specialized storage solutions.

Radiography (Chest X-Ray)

Digital radiography provides high-resolution single-frame images, commonly
around 2000×2500 pixels. These datasets are relatively small in size, facilitating
rapid processing and storage.

Ultrasound (Cardiac)

Cardiac ultrasound generates real-time sequences at high frame rates (30–60 fps).
Typically producing color images with moderate resolution (512×512 pixels), the
data rate is high ( 38 MB/s uncompressed), requiring efficient compression and
management strategies.
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2.7 Lossy Compression Standards, Globally
Accepted in Medical Imaging Community

There are many precedents among physicians of all fields that perfect reconstruc-
tion of the probe information is inconsequential to the diagnostic procedure. This
is often because the very subtle details the compression encoders remove are finer
than the inherent noise within the measurement modality. For this reason, many
physicians and medical organizations around the world have accepted certain
lossy algorithms where a loss in quality is tolerated. We follow the diagnostic
guidelines outlined by the German Rontgen Society and supporting European so-
cieties.[12, 18,22]

2.7.1 Medically Acceptable Compression Ratios

Medical imaging organizations in Germany, the UK, and Canada have all issued
clinically tested maximum compression thresholds for diagnostically acceptable
image quality. These thresholds vary by modality and anatomy. For example,
CT images of the body and chest tolerate higher compression ratios than brain
CT or digital mammography. MRI and PET imaging also permit moderate lossy
compression, especially for non-critical diagnostic tasks.[16, 17]

The German Rontgen Society recommends a maximum of 8:1 compression for
body CT, 5:1 for brain CT, and up to 10:1 for general MRI use.[12] The European
Society of Radiology (ESR) echoes these recommendations and emphasizes a prin-
ciple of Diagnostically Acceptable Irreversible Compression (DAIC), where com-
pression is permitted only if it does not interfere with clinical diagnosis.[18] For
mammography and tomosynthesis, either lossless or near-lossless compression is
advised to preserve microcalcifications and fine tissue structures.[8, 22]

As summarized in Table 2.3, most modalities allow for significant lossy com-
pression under clinical evaluation. Nevertheless, the final decision lies with the
interpreting radiologist, who must verify that diagnostic content is preserved.[16, 18]
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Table 2.3: Examples of Diagnostically Acceptable Lossy Compression Ratios by
Modality

Imaging Modality (Region) Recommended Max. Ratio
CT (Body/Chest) 10:1–15:1
CT (Brain/Head) 5:1–12:1
MRI (General) 5:1–10:1
PET / Nuclear Medicine Up to 10:1
Digital Radiography (Chest/Skeletal) 10:1–30:1
Mammography (2D) 15:1–20:1
Tomosynthesis (3D Breast) Near-lossless only

2.7.2 Bit-Depth Reduction in Clinical Compression

Medical images are frequently acquired in 12- to 16-bit grayscale formats. However,
not all bits carry clinically significant information. Downsampling from 16 bits to
10 or 12 bits has been shown to retain sufficient dynamic range and detail for
diagnostic use, especially since diagnostic monitors and human perception are
limited to approximately 10-bit grayscale resolution.[19, 22]

European and Canadian guidelines support this form of bit-depth quantization
when the resulting images remain indistinguishable from originals after contrast
adjustment. However, reductions below 10-bit are discouraged for primary dia-
gnosis, as they may obscure low-contrast features in soft tissue or pathology.[16]

2.7.3 Transcoding for Compression: FFmpeg Encoding
Best Practices

For long-term storage and transmission, encoding series of CT, MRI, or PET
images using video compression techniques (e.g., H.264/AVC or H.265/HEVC) is
gaining traction. Since these codecs exploit inter-frame redundancy, they yield
higher compression ratios for volumetric scans.[19]

To ensure medically acceptable compression, encoding must retain bit-depth
and avoid chroma subsampling that alters grayscale precision. Below are example
FFmpeg commands for converting 16-bit grayscale PNG slices into high-bit-depth
video sequences:
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H.264 High 10 Profile (10-bit):

ffmpeg -f image2 -framerate 1 -i slice_%03d.png
-c:v libx264
-profile:v high10 -pix_fmt yuv420p10le -preset veryslow
-crf 20 -g 30 -tune grain -colorspace bt709 -color_trc bt709
-color_primaries bt709 output_avc10.mp4

H.265 Main 12 Profile (12-bit):

ffmpeg -f image2 -framerate 1 -i slice_%03d.png -c:v libx265 -profile:v
main12 -pix_fmt yuv420p12le -preset slow -crf 22 -g 30 -x265-params "monochrome=1"
-colorspace bt709 -color_trc bt709 -color_primaries bt709 output_hevc12.mkv

2.8 Conclusion

Overall, the integration of lossless and lossy still compression methods from PNG,
TIFF to JPEG-LS and JPEG2000, and the video-based codecs like H.264/H.265
and FFV1 for sequences, provides a robust toolkit for handling many medical
usecases. Each method offers a trade-off between complexity, compression effi-
ciency, and compatibility. There appears to be no widely accepted codec that can
fully leverage the spatial and temporal redundancies inherent in medical imaging
data while guaranteeing reconstruction standards of diagnostically critical inform-
ation.
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3 Methodology

3.1 Research Questions

RQ1: What are the quantifiable benefits and trade-offs to re-encode old
medical information with brand new compression techniques?
RQ2: Are there encapsulation methods that more suitable to certain type
of medical imaging technologies? How feasibly can they be integrated
with the current DICOM standard?

3.2 Research Protocol

3.2.1 Various schemas used for testing

Method Bit Depth per Component Overview
JPEG 8 Lossless
JPEG 2000 1 to 38 Lossless
JPEG LS 1, 4 ,8 ,16 Lossless
JPEG LS 1, 4 ,8 ,16 Near Lossless
PNG 1, 4 ,8 ,16 Lossless (no transparency channel)
H.264 10 Very Slow Preset, 4:2:0 YUV
H.264 10 Very Slow Preset, 4:4:4 YUV
H.264 10 Very Slow Preset, 4:2:0 YUV -crf 20 -g 30 -tune grain
H.265 12 Medium Preset, 4:4:4 YUV
H.265 12 Very Slow Preset, 4:4:4 YUV
H.265 12 Slow Preset, 4:2:0 YUV -crf 22 -g 30
FFV1 1, 4 ,8 ,16 Lossless ,gray16be

3.2.2 Sample Set for Testing

Uncompressed DICOM images found from public sources combined with newly
encapsulated DICOM files created from base medical images. All images used,
have been gray scaled.
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3.2.3 Dependant Variables

Variable Explanation
CR a compression ratio denoted to the second decimal
ES encoding speed measured in ms
QL quality loss measured in MSSIM and PSNR

3.3 Performance Metrics

3.3.1 MSE

The Mean Squared Error Mean Squared Error (MSE) is a commonly used quant-
itative metric to measure the difference between an original image I and its re-
constructed version I ′. The MSE is calculated as the average squared intensity
differences between corresponding pixels:

MSE(I, I ′) = 1
N

N∑
i=1

(Ii − I ′
i)2 (3.1)

where N is the total number of pixels, and Ii and I ′
i represent the intensity values

of the i-th pixel in the original and reconstructed images, respectively. Lower MSE
values indicate higher similarity and better reconstruction quality.

3.3.2 PSNR

The Peak Signal-to-Noise Ratio PSNR is another widely used metric derived from
MSE, typically employed to quantify reconstruction quality. PSNR is defined as:

PSNR(I, I ′) = 10 · log10

(
L2

MSE(I, I ′)

)
(3.2)

where L is the dynamic range of pixel intensities (commonly 2bits per pixel − 1).
PSNR values are expressed in decibels (dB), with higher PSNR indicating better
image quality.
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3.3.3 SSIM

The reconstruction quality is measured using the Structural Similarity Index Meas-
ure SSIM, which evaluates perceptual similarity rather than relying solely on ab-
solute intensity differences. Unlike absolute difference metrics, such as MSE and
PSNR, SSIM considers luminance, contrast, and structural information, aiming to
align better with human visual perception. SSIM values range between -1 and 1,
with values closer to 1 indicating higher similarity, and values closer to -1 indicating
higher anti-correlation, while 0 indicating no similarity.

For images I and reconstructed image I ′, SSIM is defined as:

SSIM(I, I ′) = (2µIµI′ + c1)(2σII′ + c2)
(µ2

I + µ2
I′ + c1)(σ2

I + σ2
I′ + c2)

(3.3)

where:

• µI and µI′ are the averages of I and I ′

• σ2
I and σ2

I′ are the variances of I and I ′

• σII′ is the covariance between I and I ′

• c1 = (k1L)2 and c2 = (k2L)2 are constants to stabilize the division

• L is the dynamic range of pixel values (typically 2bits per pixel − 1)

• k1 = 0.01 and k2 = 0.03 by default

SSIM is typically computed locally using a sliding window approach, and the
mean SSIM (MSSIM) over the entire image is defined as:

MSSIM(I, I ′) = 1
M

M∑
j=1

SSIM(Ij, I ′
j) (3.4)

where M is the number of local windows in the image, and Ij, I ′
j represent image

contents within the j-th local window.
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3.3.4 Compression Ratio (CR)

The Compression Ratio (CR) quantifies the effectiveness of a compression al-
gorithm by comparing the size of the original data to that of the compressed data.
It is defined as:

CR = So

Sc

(3.5)

where:

• So is the size (in bits or bytes) of the original data,

• Sc is the size (in bits or bytes) of the compressed data.

A higher CR value indicates more efficient compression, as a larger original file
is represented by a smaller compressed file.

3.3.5 Analysis Plan

A pipeline that will encode, decode and analyze the various methods with the
dataset has been created to log the dependent variables. Another pipeline to visu-
alize the dissimilarities by generating heatmaps based on individual SSIM and
MSE calculations have been created to look deeper in the regions effected by the
compression. As well as the tools to group and analyze similar images so further
insights to the data-encoding pairs can be found. Storage gains possible with the
standards, and more importantly the similarity metrics with the uncompressed
have been explored and their feasibility have been outlined with the possible im-
plementation steps to accommodate the medical use-cases.

3.3.6 Testing Environment and Hardware

Python 3.10.4 and the following libraries combined with the FFMPEG codecs
have been used to conduct this paper.
numpy, opencv-python, scikit-image, imagecodecs, pandas, pillow-jpls, OPEN-
JPEG, jpegls, glymur,

ThecomputerusedforallthetestingsisanAMDRyzenThreadripper2990WX32 −
CoreProcessor3.00GHzwith128GBRAMrunningx64Windows10.
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4 Proposed Archival Method

We propose relatively a novel method for archiving similar (i.e., images taken of the
same body part using the same camera calibration) 3D medical scans together by
”intertwining” similar slices together, utilizing modern video encoding techniques
such as H.264/AVC and HEVC 2.5.1. These codecs are engineered to leverage sim-
ilarities between consecutive frames, and intertwining the frames across different
but similar samples increases the overall interframe redundancy, thus improving
CR. This is most suitable as an archival method for modalities where variance
between samples are low such as skeleton and head CT’s. Although our approach
might not achieve the absolute compression ratios of specialized domain-specific
methods, it benefits from the robustness, reproducibility, and continued support
provided by off-the-shelf encoding systems.

4.0.1 Exploiting Temporal Redundancy

In both H.264 and HEVC, once the spatial representation is obtained via the DCT
and DST, the codecs exploit temporal redundancy using interframe prediction.
To quantify the similarity between successive frames, we compare their transform
coefficient matrices. Let T1(u, v) and T2(u, v) denote the transform coefficients
(obtained via either DCT or DST) for two successive frames. A similarity metric
can be formulated as:

S(T1, T2) =
∑

u,v |T1(u, v) − T2(u, v)|2√∑
u,v |T1(u, v)|2∑u,v |T2(u, v)|2

(4.1)

We consider two frames sufficiently similar for interframe encoding if:

S(T1, T2) ≤ ϵ (4.2)

where ϵ is a predefined similarity threshold. When this condition is met, the
encoder reorders the frames that are most similar next to each other, achieving
significant compression by capitalizing on temporal redundancies. It is important
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to note that this metric is performance intensive, And should be calculated for
a few key frames with the same positioning across different samples. An initial
grouping based on additional factors such as modality, sex, age, weight, position
of the slice is also necessary.

4.1 Compression Scheme

Figure 4.1: Compression Schema

Our compression approach consists of three main steps:

• Extraction Frames and the relavent patient information is extracted.

• Grouping: After a grouping based on keywords and contextual information,
similar enough (see 4.1) scans are found and their frames are ”intertwined”
by finding an efficient ordering.

• Encoding: The frames are encoded together with the chosen parameters.
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Further improvements such as encoding the the patient information and the scan
together similar to[1] is possible,

4.2 Implementation and File Organization

Our archive structure is organized as:

Archive
order.txt # Order information
patients.txt # Patient information
encoded-video # .avi .mkv or .mp4 depending on the format used

4.3 Quality Assessment

We use theSSIM and PSNR to measure the quality of our compressed images.
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5 Results

5.1 Volumetric Information

5.1.1 Human CT scans

21 different head CT scans as well as 4 breast tomographies have been encoded
with the various methods shown in 3

Breast Tomography

4 different Breast Tomography scans have been tested

Intertwined Data

21 different Head CT scans have been encoded into a single file to provide the
results.

5.2 Non-Volumetric Information

5.2.1 Human X-Ray Scans

15 different X-Ray scans have been tested.

5.2.2 Pathology Scans

2 Slices one on the liver and the other on the breast have been tested.
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Figure 5.1: An overlayed heatmap to display the structural changes between 5
frames.

Figure 5.2: Averaged PSNR Values for Head CT
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Figure 5.3: Averaged SSIM Values for Head CT

Figure 5.4: Averaged Compression Ratio for Head CT
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Figure 5.5: Averaged Encoding Time for Head CT

Figure 5.6: Averaged PSNR values for Breast Tomography scans
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Figure 5.7: Averaged SSIM values for Breast Tomography scans

Figure 5.8: Averaged Compression Ratios for Breast Tomography scans
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Figure 5.9: Averaged Encoding Time for Breast Tomography scans
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Figure 5.10: PSNR values of the Proposed Intertwining Method
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Figure 5.11: Encoding Time of the Proposed Intertwining Method
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Figure 5.12: SSIM values of the Proposed Intertwining Method
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Figure 5.13: Compression Ratio of the Proposed Intertwining Method

Figure 5.14: Averaged PSNR values for Human X-Ray scans
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Figure 5.15: Averaged SSIM values for Human X-Ray scans

Figure 5.16: Averaged Compression Ratios for Human X-Ray scans
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Figure 5.17: Averaged Encoding Time for Human X-Ray scans
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5.3 Discussion

The results in Chapter 5 highlight the benefits of using advanced compression
methods for volumetric CT scans. In Figures 5.2–5.5 show that modern encoders
(e.g., H. 264/H. 265) can achieve a significantly higher compression ratio without
seriously compromising image fidelity, as indicated by the favorable PSNR and
SSIM values.

For the intertwined dataset (Figures 5.10–5.13), we combined 21 different CT
scans into one continuous stream. This approach further capitalizes on slice-to-
slice similarities across multiple patients. Figure 5.10 confirms that the overall
PSNR stays consistently high, while the compression ratio (Figure 5.13) is higher
than simpler, single-volume encodings. However, the encoding time (Figure 5.11)
can be longer, so this method might be best suited for archival or offline workloads.

In contrast, non-volumetric images such as single-frame X-rays or pathology
slides 5.16 show little benefit from “video-like” strategies. Their compression
largely relies on standard 2D methods like JPEG 2000 or JPEG-LS, which still
maintain strong diagnostic fidelity in a smaller file size. Overall, these findings
emphasize the importance of matching the compression strategy to the imaging
modality and clinical use, striking the right balance between file size savings and
diagnostic integrity.
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6 Conclusion

This thesis explored the landscape of 3D voxel texture compression in medical
imaging, with a focus on formats compatible with the DICOM standard. Through
a comparative analysis of still-image codecs 2.3, video-based methods 2.5.1, and
a novel intertwined archival strategy 4, we demonstrated the potential of modern
encoders to significantly reduce storage requirements while preserving diagnostic
quality.

Empirical results 5 showed that inter-frame redundancy can be effectively ex-
ploited in volumetric datasets like CT scans, especially when similar frames from
multiple patients are grouped and encoded collectively. Our proposed method
yielded favorable compression ratios 5.5 and high structural similarity scores 5.3,
though with increased encoding times suggesting its best fit in archival scenarios
rather than real-time applications.

For non-volumetric data , traditional 2D approaches like JPEG 2000 and JPEG-
LS remain sufficient and more efficient.5.16 The results reinforce the importance
of aligning compression strategy with imaging modality and clinical use case.

Future work should evaluate clinical usability through observer studies and work
toward standardizing acceptable levels of compression for regulatory approval.
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